If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2+39p+54=0
a = 5; b = 39; c = +54;
Δ = b2-4ac
Δ = 392-4·5·54
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-21}{2*5}=\frac{-60}{10} =-6 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+21}{2*5}=\frac{-18}{10} =-1+4/5 $
| 3x+2(x+4)=-22 | | 2x+2(2x-5)=38 | | 2n–7=3 | | 2x+32=29x | | 900000+8x=100000+4x | | 8x+38=-3(-6-12) | | 3n^2+22n+24=0 | | 1/6=h+29/h-11 | | (24/(m+10))+1=24/(m-10) | | 5(2m+3)=20 | | 2(x+7)^2=24 | | -15+35=-2(x+4) | | 5(n+2)=3÷5(5+10 | | 9a-5a=21 | | -15+35=-2(x | | 6p^2-48p+40=0 | | 5.7=(5.6+5.6+5.8+x+5.9+5.4)/6 | | 9z=99 | | 3/(x-10)^2-12=0 | | 191+80x=491+60x | | 4(1/2x+3)=3x+12-x | | -4(z-3)=2-3 | | n=900 | | s=900 | | 3(5+2)+4=10+3x5 | | 1/3*(x-10)^2-12=0 | | x-7/5=x+5/8 | | 4=r/5+6 | | -3/x=6/x-1 | | 3x-2x+5x+92x=42 | | 10x-32=6x | | 1x+6+3x+8=18 |